

MATRICES AND CALCULUS

UNIT - I: Matrices

S.NO	Questions	BT	CO	PO
	Part – A(Short answer questions)			
1	Define rank of a matrix and give one example	L1	CO1	PO1
2	Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	L2	CO1	PO2
3	Define Echelon form and normal form	L1	CO1	PO1
4	State the different conditions in non - homogeneous system of equations.	L2	CO1	PO1
5	Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ by reducing to echelon form.	L2	CO1	PO2
6	Define symmetric matrix and give a suitable example.	L1	CO1	PO1
7	Define an orthogonal matrix and give one example.	L1	CO1	PO1
9	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$	L2	CO1	PO2
10	Find the adjoint of the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}$	L2	CO1	PO1

S.NO	Part –B (Long answer questions)	BT	CO	PO
1(a)	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 5 & 6 \end{bmatrix}$, by reducing it to the normal form.	L2	CO1	PO2
1(b)	Find the Inverse of a matrix $A = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ by using Gauss-Jordan method.	L3	CO1	PO2
2 (a)	Reduce the Matrix $A = \begin{bmatrix} 2 & -4 & 3 & -1 & 0 \\ 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{bmatrix}$ into	L2	CO1	PO2

1

MATRICES AND CALCULUS(25MA101)

An Autonomous Institution| Affiliated to JNTUH | Approved by AICTE

	your roots to success. Accredited by NBA	Accredited by NBA & NAAC with 'A' Grade				
	Echelon form. Hence find its Rank.					
2(b)	Examine for what values of p and q, so that the equations $2x+3y+5z = 9$, $7x+3y+2z=8$, $2x+3y+pz=q$ have (i) No solution (ii) Unique solution (iii) Infinitely many solutions.	L4	CO1	PO2		
3(a)	Solve system of equations $x+y+w=0$, $y+z=0$, $x+y+z+w=0$, $x+y+2z=0$.	L3	CO1	PO1		
3(b)	Solve the equations $3x+y+2z=3$, $2x-3y-z=-3$, $x+2y+z=4$ using gauss elimination method.	L3	CO1	PO1		
4	Solve the system of equations by gauss seidel method $20x+y-2z=17$, $3x+20y-z=-18$, $2x-3y+20z=25$.	L4	CO1	PO3		
5(a)	Find the rank of the value of k, if the rank of the matrix A is $ 2, \text{ where } A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0 \end{bmatrix} $	L2	CO1	PO1		
5(b)	Show that the equations $x+2y-z=3$, $3x-y+2z=1$, $2x-2y+3z=2$, $x-y+z=-1$ are consistent and solve them.	L2	CO1	PO1		
6	Solve the system of equations using gauss seidel iteration method $10x+y+z=12$, $2x+10y+z=13$, $2x+2y+10z=14$	L1	CO1	PO1		
7	Solve the system of equations $2x-y+3z = 0$, $3x+2y+z=0$ and $x-4y+5z=0$.	L1	CO1	PO1		
8	Define Rank and Find the rank of the matrix $A = \begin{pmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{pmatrix}$ by echelon form	L2	CO1	PO2		
9	Solve the system of equations $x+2y+3z=1,2x+3y+8z=2,$ $x+y+z=3$	L1	CO1	PO1		
10	Find the values of a,b for which the equation x+y+z=6,x+2y+3z=10,x+2y+az=b have i)No solution ii)a unique solution iii)an infinite solutions	L2	CO1	PO2		
11	Find the value of k such that the rank of $\begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & k & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$ is 2	L1	CO1	PO1		